
6 y o A I R
l'eau , que Tait ne s*unit pas à Veau en tonte proportion^
ou, pour parler d’une manière plus conforme
aux principes que j’ai établis en traitant de Paffinité
efexcèsy que le compofé d’air & d’eau n’a qu’une
très-foible affinité avec l’eau, même dans l’état de
vapeurs le plus favorable à cette union.
Au furplus, quoique j’aie fuppofé jufqn^à préfent
avec M. de SaufTure, que l’eau, dans cet état de
fufpenfion dans l’air, affeéle la forme de véficule ou
de fphère creufe, je ne dois pas terminer cet article
fans expofer les raifons qui me paroiffent réfifler à
cette fuppofition. La comparaifon des bulles de fa-
von n’efl point affez exaéfe pour tenir lieu de preuve,
puifqu’ici nous connoiffons parfaitement la matière
de l’enveloppe ou pellicule vifqueufe qui enferme
de l’air dilaté, fur lequel elle n?a point d’a&ion ; au
lieu que dans les véficules d’eau, nous ne pouvons
pas même concevoir quelle feroit la nature de leur
enveloppe, comment elles réfifleroient à la prefïion,
fi- elles étoient abfolument vuides, comment dans ce
cas elles pourroient augmenter ou diminuer de volume
par l’impreffion de la chaleur & du froid,
ce qui efl généralement reconnu. Il y auroit encore
bien plus de difficultés à imaginer que le calorique
ou matière de la chaleur pût remplir la capacité de
ces .fphères, dans un état .libre, fans combinaifon, ;
fans tendance à la combinaifon , puifqu’il. n’agiroit
pas fur fon enveloppe.
Il efl donc bien plus naturel de penfer que les
vapeurs aqueufes diflinôes de l’air humide ou de la
diflblution de l’eau par l'air, font tout fimplement des
globules d’eau tenue en dijfulution par une grande quantité
de calorique. On ne fera plus étonne que ces globules
refient féparés de l’air, c’eft, comme nous l’avons
v u , l’effet de la faturation ; cette idée fe concilie
facilement avec une légèreté égale ou même
fupérieure à celle de l’air, car nous favons que l’eau ]
peut être raréfiée bien au-delà de ce qui efl nécef- j
faire pour remplir cette condition. Que ces globules i
vaporeux foient vifibles à l’oeil nud, fous un jour
favorable , i il ne s’enfuit nullement que toute l’eau
que leur légèreté permet d’admettre dans leur fubf I
lance, doive nécefïàirement fe trouver à leur fur-
face ; ce n’efl pas la quantité des molécules d’eau
dans. cette furface qui fait la mefure de l’image,
mais l’efpace qu’elles cirçonfcrivent ôc fur lequel la
lumière fe réfléchit ; la vifion d’un pouce cube de
liège efl auffi diflinéle que celle d’un pouce cube
d’or. L'apparence de ces fphères, même vues au
microfcope-, n’efl pas d’un grand poids pour décider i
l e . vuide ou le plein de leur capacité, quand on I
confiHère combien il doit fe rencontrer de caufès
d’illufion dans l’examen de corpufcules mobiles &
d’une auffi extrême petiteffe; MM. Kratzenflen &
déSâtiffurequ; les ontobfervés avec le plus de foin,
s’accordent à placer leur groffeur moyenne entre
de ligne de diamètre. Les couleurs produit
s par la -réfraélion des rayons tranfmis à travers
cês globules ne prouvent pas plus qu’ils foient
véficulairesiM. Kratzenflen, en fuiyant la méthode'
A I R
donnée par Newton pour les boules d’eau de favdïïj
a voit conclu de fes obfervations une épaiffeur de
lame ou de l’enveloppe de ces fphères , telle qu’en les
fuppofant vuides, leur diamètre auroit dû être trente-
fix fois plus grand pOur qu’elles puffent s’élever
dans l’air; & M. de Saùffure a reconnu qu’il étoit
impoflible de tirer aucune induélion certaine de ces
expériences, foit à caufe de la brièveté de la durée
de ces couleurs, foit parce qu’elles étoient plutôt fi-«
mültanées que fucceffives ( §. aop).
Ainfi nous n’avons, du moins jufqu’ à préfent,’
aucune obfervation, aucune expérience qui établifle
ni la concavité de ces fphères , ni la néceffité d’une
athmofphère particulière qui les défende du contaffc
de L’air ; & fi l’application des principes des affinités ,
des propriétés des corps dont l’exiflence efl prouvée ,
ne fatisfait pas encore pleinement à l’explication de
tous les météores aqueux & des phénomènes qu’ils
préfentent; cela vient probablement de ce que nous
n’avons pas une connoiffanee fuffifante des loix de
la communication de la chaleur. La fécondé remarqua
que j’ai annoncée va en offrir un exemple & pourra,
fervir d’éclairc iflement à ce fujet,
2P. Quoiqu’il, foit vrai en général que l’air efl dif-
folvant de l’eau, & que cette combinaifon n’exige,
comme toute autre diAblution, que la condition d’une
certaine température, fuivant laquelle changent les
quantirés diflbutes; il faut prendre garde, cependant
qu’il ne s’enfuit pas néceffairement que la marche
de la chaleur foit entièrement uniforme pour l’air
& pour l’eau, ni même que les quantités d’eau- que
l’air peut tenir en diflblution foient exactement proportionnelles
à fa température ; la formation de 1»
pluie & plufieurs autres'phénomènes auffi familiers
réfiflent abfolument à cette eonféquence , c’efl ce
qui a engagé lés Phyficiens à propofer diverfes hy-
pothèfes pour leur explication-. Je n’en entreprendrai
pas l’examen qui m’engageroit dans dés difcuflions
trop étrangères à cette analyfe mais je ne puis me
difpenfer de faire connokre le fyflème qui me paroît
jufqu’à préfent le mieux établi, qui fe concilie le
plus facilement, foit avec les faits, foit avec les
principes des diflblutions; & il me fuffira pour cela
de donner un précis de la differtation que M. le
D. Hutton a communiquée le 2 Février 1784 à la
Société d’Edimbourg.
Les loix générales de là communication dé la
chaleur & du froid ( dit cet Auteur ) ne rendent pas
raifbn de ce que l’naleine des animaux devient vifible
, quand elle efl expirée dans une athmofphère
froide, ni de ce que la vapeur tranfparente fe tranf*
forme en nuage , quand elle efl mêlée avec de l’air
d’iine température plus froide ; il y a donc pour ces
cas une loi particulière.
Gn peut regarder l’air expiré par un animal comme
de l’air tenant en diflblution de l’eau, ou plutôt fa-
turê d’humidité au degré de chaleur qu’il a reçu
dans ,1’aâe de la refpiration. Si cette diflblution vient
à fe refroidir > l’eau, fuiyant les loix communes d©
A I R
U tondcnfàtîon, doit fe féparer du diffoîvant ou devenir
vifible en réflèchiflant la lumière. L’eau peut
être également convertie par la feule chaleur en un
fluide élaflïque invifible , & ce fluide étant refroidi
fé condenfe èn eau & redevient vifible. Mais il efl
prouvé que quand la vapeur fe rend vifible en fe
mêlant à l’athmofphère , cela ne dépend pas uniquement
de la chaleur & du froid, ou qiie les effets ne
font pas toujours en raifon égale de l’augmentation
ou diminution de la chaleur. 1 A
Pour arriver à la fblution de ce problème, il faut
fans doute rechercher tous les rapports poffibles, &
6’il s’en trouve un qui s’accorde avec les obfervations,
on fera fondé à le regarder comme l’expreffion de
la loi fpéciale de la nature dans les cas dont il s’agit.
La puiflance diffblvante de l’air à l’égard de l’eau
peut être confidérée fous trois rapports différens : car,
ou elle diminue comme la chaleur augmente ; ou
elle ne change pas par le changement de température
; ou elle augmente avec la chaleur. Le premier
cas répugne à tout ce que nous connoiffons des dif-
folutions; le .fécond peut convenir, à un certain
point , à quelques diflblutions falines. qui s’opèrent
prefque auffi bien dans l’eau froide que dans l’eau
chaude ; le dernier efl fans contredit le plus général,
c’efl-à-dire, que la puiffance diffolvante augmente
avec la chaleur.
Maintenant, cetteaélionde la chaleur peut varier
©1 diverfes proportions :
1 0.. La diflblution de l’eau par l’air peut varier
en même raifon que la chaleur.
a’0. Elle peut varier en plus grande raifbn.
3°. Elle peut varier en moindre raifon ; tellement
que la chaleur s’augmentant par degrés
égaux , la quantité de la vapeur diffoute
augmente auffi ,• mais dans des proportions
qui décroiffent continuellement.
Ces trois raifons peuvent être repréfentées géométriquement
de cette manière:
Suppofons que la ligne droite CH foit l’échelle
efun thermomètre de 80 divifions entre la congélation
& l’ébullifion de l’eau.
Que les ordonnées perpendiculaires ambr font
ttomafte les quantités d’eau que peut tenir en diffo-
A I R f i t
lutîbil une quantité donnée d’a ir , à la température de
a & de b.
Que l’on tire maintenant la ligne droite mr.
Que l’on trace enfin les deux courbes, l’une inférieure
mdefr, l’autre fupérieure mghlr.
Il efl clair que les ordonnées à la ligne mr marqueront
les progrès de la chaleur & en même temps
de la diflblution variant en même raifon que la
chaleur.
Les ordonnées à la courbe mdefr marqueront
les progrès de la diflblution variant en plus grande
raifon que la chaleur.
Et les ordonnées à la courbe mghlr marqueront
les progrès de la diflblution variant en moindre raifbn
que la chaleur : car ces ordonnées font prifes
dans la proportion de la quantité d’eau diffoute dans
l’a ir , aux différentes températures indiquées par la
ligne CH d’où elles font tirées.
Pour connoître l’effet du mélange de plufieurs portions
de l’athmofphère faturée à différentes températures
> il ne faut pas perdre de vue que les ordonnées
à la ligne mr, tirées du point de la ligne
CH qui indique la température du mélange, repré-
fentent toujours la quantité d’eau contenue dans une
unité du mélange; car les ordonnées ma,rb font-
fuppofées proportionnelles à la quantité contenue
dans une unité d’air des deux températures a &
b; & il efl affez probable que, par le mélange, la
chaleur & l’eau fout uniformément diflribuées, &
par conféquent que tant la chaleur que l’eau contenues
dans une unité du mélange font dans la même
proportion & peuvent être exprimées par la même
mefure.
Dans la fuppofition d’une égale diflblution, que
l’on mêle des portions égales d’air fàturé à la température
de 4 degrés au deffus de zéro & à la température
de 16 degrés; le mélange produira la^ température
10 , qui fera repréfentée par l’ordonnée op.
Cette ordonnée repréfentera donc auffi la quantité
d’eau tenue en diflblution par une unité de mélange
ou par une unité d’air à la température de 10 degrés.
Au lieu de parties égales, mettons deux parties
de diflblution faturée à la température 16 & une à
la température 4 , nous aurons la température 12 ,
exprimée par uq & qui exprimera en même temps
la quantité d’eau diffoute par une unité du mélange.
De la même manière, deux parties de la température
4 mêlées à une partie de la température 16*
donneront la température 8 , & l’ordonnée en ex-
primera la chaleur, le mélange & la diflblution d’une
unité.
Tous les mélanges qu’on pourra faire dans cette
première fuppofition feront donc également faturés
de la fubflance diffoute, fans défaut ni excès; c’efl:
ce qui n’a pas lieu dans les deux autres proportions,
parce que, dans ces deux cas , les ordonnées de la
chaleur & de la diflblution ne font plus les mêmes.
En effet, dans le fyflême de la courbe m d e fr ,
qui repréfente la proportion croiflante de diffolu-
tion» fi Fon meje des portions égales d’air à 4 & à
S s s s ijj