
4^8 A D H
ques fur le mercure, comme on le pratique dans
l’étamage des glaces, pour qu’il ne refte point de
bulles d’air ; & pour-lors j’ai déterminé avec pré-
cifion la fomme des poids qui étoit néceffaire pour
rompre l’adhéfion. Je n’ai pas befoin d’avertir que
je changeois à chaque fois le mercure. Voici la table
dés réfultats. .
L’or adhère au mercure avec une force de 446 grains.
L ’a r g e n t ....................... ..... • • • 429
L’étain . . . . • • • • • 41°
Le plomb . . • • . . . • 397
Le bifmuth . . • ■ • • • • 372
Le zinc • .................................. • a°4
Le cuivre . . . • • • • * • I4a
L ’antimoine (régule) . . . . . • I2-o
Le fer . . ■ • • • § I * •- ” 5
Si l’on examine maintenant d’où peuvent provenir
des différences aufli marquées, on eft bientôt force
de reconnoître que la preflion de l’air n’y a aucune
part, puifqu’à cet égard les conditions font abfolu-
ment pareilles. ,
Elles ne dépendent pas des accidens du poli des
furfaces ; une plaque de fer funplement dreffee ^ au
burin adhère plus qu’une plaque de même diamètre
qui a reçu le poli le plus v i f , & nous verrons que
cela doit être, parce qu’une furface rabôteufe préfente
au fluide qui s’y applique, un plus grand développement.
^ #
Ces différences ne fùivent pas les denfites; fans
cela l’argent marcherait après le plomb, le cobalt
adhéreroit plus que le zinc, le fer plus que letain-,
&c. On peut dire que tout ferait renverfé.
Quel eft donc l’ordre auquel ces adhéfions parodient
conflamment aflùjetties ? C eft precifement
l’ordre des affinités, ou la gradation de la plus ou moins
grande diffolubilité des métaux par le mercure
Iv oy e i A m a l g a m e ). L’or eft celui que le mercure
làiftt le plus avidement , il fe trouve le premier;
le mercure ne diflbut.ni le fer, ni le cobalt, ils
font placés aux derniers rangs, . > ,
Cette correfpondance n’étant certainement pas 1 ouvrage
du hafard, les confoquences qui en naifîent
femblent feites pour porter le plus grand jour fur la
théorie des phénomènes chymiques. On voit ^ clairement
qu’ils dépendent tous de cette propriété générale
de la matière, que nous nommons attraélion •;
que cette propriété ■ toujours la même , toujours fou-
mile aux mêmes lo ix , produit des effets tres-diffe-
rens. fui vaut les diftances & les rapprochemens qu oc-
calionne la variété des formes élémentaires ; qu il
y a une adhéfion quelconque par le contait de toute
matière ; que l’àdhéfion eft le premier effet ou ,
pour mieux dire-, le premier inftant de l’affinité;
que l’affinité n’eft qu’une adhéfion à un degre capable
de produire diffolution ; en un mot qu il eft
pofiible d’eftimer les rapports d’affinités par les rapports
d’adhéfions. Nous pouvons dire, par exempte ,
dès à préfent que les affinités'qui tendent à unir le
jpercureavec l’o r , avec l’argent, avec le zinc, avec-
A D H
le cuivre, &c. font :: 446: 429 : 164 :142. &c.
En multipliant ces obfervations, je ne doute nullement
qu’on ne puiffe étendre cette méthode à bien
d’autres cas, finon pour en tirer des rapports numériques
aufli conftans, du moins, comme je l’ai dit,pour
affiner d’autres réfultats. Il y a encore bien loin du
terme que l’on doit fe pfopofer, qui eft de découvrir
les diverfes figures des élémens qui conftituent
ces variétés d’adhéfion & d’affinité, on ne peut donc
réunir trop de moyens. Dans ce point de vu e , c eft
une chofe très-intéreffante à examiner , que la quef-
tion de favoir fi au premier inftant l’adhéfion des
corps folubles dans les acides ne correfpond pas à
l’affinité qu’ils ont avec ces arides. On ne connoît
encore que très-imparfaitement les affinités des métaux
dans la fufion pour les alliages; on pourroit
peut-être parvenir à les déterminer en tenant le plus
lufible en état de fluidité, & préfentant les autres
en forme de plaque folide à la furface du bain,
comme je l’ai fait pour le mercure; mais il faudrait
avoir attention de faifir l’effet dans le premier inftant,
& fur-tout de ne pas laiffer refroidir ces métaux
pendant qu’ils fe touchent ; car alors la force d adhé-
fion devient à peu près égale a la cohefion des
parties métalliques homogènes, même avec les métaux
qui fe fondent fans s’allier, comme le fer &
l’argent, le fer & le plomb, &c. (voyez A l l i a g e ) :
ce qui ne doit pas étonner, le contact devenant infiniment
plus parfait par la facilité que les parties
fluides ont à fe mouler les unes fur les autres ; oit,
pour mieux dire , le. contari n’étant dans ces adhéfions,
comme le remarque l’illuftre Bailly, quune
plus grande proximité. (Hift. de l’Aflronom. moi. liv.
12. §. XI.)
S. I I I . Adhéfions ohfienies & calcüUesparM. Achari,
dans les mêmes vues & par Us. mêmes principes. '
M. Achard, convaincu par mes expériences de
l’exaétitude de la méthode du Docteur Taylor , 11e
tarda pas à appercevoir aufli le parti que la Chy-
mie en pouvoit tirer; il examina le principe, multiplia
les applications ,& publia, en 1780 ,dans un
recueil d’opufcules ( Chymifch-Phyfifche fchriften, p.
334) , le réfultat d’un travail confidérable que je me
crois d’autant plus obligé .de faire connoître ici, que
fou mémoire n’a encore été imprimé qu’en allemand,
& qu’il fournit déjà un grand nombre des obferva-
tions que j’ai defirées, comme pouvant feules nous conduire
à l’eftimation des points de çontari par l’adhé-
fion, & , par le calcul des points de coptaâ, à la
détermination de la figure des parties qui fe touchent
& des affinités qui en réfultent.
Le célèbre Académicien de Berlin infifte d’abord
fur trois conditions effentielles pour la régularité de
ces expériences. 1°. Que le corps folide dont on veut
mefurer l’adhéfion avec un fluide ,-foit bien fufpendu
par le ..point de centre, pour qu’il fe tienne dans
une pofition parfaitement horizontale , & que la force
qu’on emploie à le détacher forme toujours un angle
A D H
a,nît avec le ’fluide. 20. Qu’il ne refte point de bulle
'd’rir interpolée entre le. folide & le fluide , ce qu on
anoerçoit aifément avec les difques de verre, mais
S avec des folides de matière opaque ; pour prévenir
cet inconvénient , il n’a rien trouve de mieux
me de faire gliffer, comme je l’ai d it , le difque fo-
S V fu r le fluide. 30. La derniere précaution que recommande
M. Achard, eft d e 'n ’ajouter les contrepoids
fur-tout-vers la fin, que fucceflivement &
L r petites parties, pour n’occafionner aucune fe-
coufl'e ; il a employé dans cette vue.de petites lames
de papier d’un quart de gram. '
l i a voulu s’affurer enfuite f i, la chaleur reliant
la même les variations de pefanteur de la colonne
de l’air indiquées par l’élévation du mercure dans
le baromètre, n’auroient pas quelqu’infhience fur ces
expériences ,& il n’a trouvé aucune différence fenfi-
ble dans la force d’adhéfion d’un difque de verre avec
l’eaudiftillée. .
Il n’en a pas été de meme lorfquil a opéré a clii-
, férens degrés de chaleur, & à égale élévation du baromètre;
les réfultats ont été différons, & cette dit-
férence ne venoit pas de la chaleur de lair am-
biant mais de la chaleur qu’il avoit communiquée
à l’eau. C ’eft ce dont il n’eft pas poffible de douter,
puifqu’en répétant ces expériences à différentes températures,
la force d’adhéfion ne varie, plus f i l eau
eft au même degré. .
Quand les fluides font plus froids , 1 adhéfion elt
plus forte , & la raifon en eft. fenfible , ils contiennent
plus de matière' fous lé même volume, ils
doivent préfenter plus de points de contact dans
le même efpace , & puifque la force d’adhêfion eft
proportionnelle à la fomme des points de contaél,
elle doit augmenter quand les fluides-font pluscon-
denfés par le froid , diminuer quand ils- font plus
raréfiés par la chaleur .: c’eft ce qui arrive conflamment.
M. Achard ne s’eft pas borné à obferver ces variations
de la force d’adhéfion du verre a 1 eau échauffée
à-différens degrés, il les a foumifes au calcul
pour affurer les obfervations & en rendre 1 application
facile à tous les degrés; je réunirai dans une
feule table la comparaifon de tous ces réfultats , pour
qu’on puiffe juger au premier coup d oeil que les
différences entre l’adhéfion obfervée & l’adhéfion cal-
culée font très-foibles, qu’elles font tantôt en plus
tantôt en moins, ce qui prouve qu’elles- dépendent
uniquement de quelques accidens ; mais auparavant
il faut indiquer la bafe fur laquelle il a établi ce
calcul. ; ,r
Soit X le degré de chaleur de l’eau, ladhelion
correfpondante Y , fon coefficient b , & la force
confiante a; on a l’équation X = :a—* b Y . •
Pour avoir les valeurs de a & de b, il s eft fervi
de deux obfervations; l’une,où l’eau, étant à 104 degrés
de chaleur du thermomètre de Sulzer, a ma-
nifefté avec le verre une adhéfion qui a été vaincue
par un contrepoids de So grains ; l’autre, ou 1 eau
étant à 5 6 degrés du même thermomètre , il a fallu
A D H 469
P a r t a n t d e c e s d e u x t e r m e s , 104 = a b — 80 b
5 6 = a b — 8 9 b
D ’o ù l ’o n t i r e : a = î 5 3 0
b = - ^
Ainfi le rapport de la chaleur de l’eau avec ion
adhéfion au verre peut être exprimée de cette manière
1 X — — y- Y . Et de là on déduit les valeurs
correfpondantes de X & de Y pour toutes les
adhéfions du verre à l’eau échauffée ou refroidie à
différens degrés.
J’ai cru devoir joindre à la table fuivante une
colonne pour y rapporter les degrés du thermomètre
de Réaumur qui correfpondent aux degres du thermomètre‘
de Sulzer, qui eft peu connu en France.
T A B L E I. D e la fo r c e d 'a d h é fion <£un difque
de verre de / f-- p ou ce de diamètre ? avec
r e a u , a différentes températures , determinee
en g r a in s , fu iv a n t te xp é rien ce & fu iv a n t le
c a lcu l y avec la différence des réfultats.
Degrés
du
thermom.
de Sulzer.
Degrés r
de I
l’éehelle 1
de Réaum. 1
Adhéfion
fuivant
l’expérience.
Adhéfion’
trouvée
par
le calcul.
Différence
de l’expérience
au calculgrains.
grains.
4 8 ,7 1 95 8i -j 8 1 , 5 5
1
O
'o
4 6 * 15 :
8 2 ;* !, | 8 2 ,5 0 0,00
43 »58 85 «3 1 8 3 ,4 3 - 1 - 0 , 3 4
4 1 ,0 2 80 ■■ 841" 8 4 ,3 7 *+■ 0, 13
3 8 ,4 6 75 85 1 8 5 . 3 1 —fr 0 ,4 6
35»89 —7°- - 8 6 !
vo
00
- 0 , 2 5
33.33 65 8 7 2 8 7 , 1 8 - t - o>, 0 7
3 0 ,7 6 60 88 i 8 8 , 1 2 - H 0 ,3 8
2 7 ; 56’. 5 5 ' 8 9 8 9 ,0 6 --- 0 ,0 6
2 5 ,6 4 5° 90 i 9 0 ,0 0 -+- 0 ,2 5
23,07 45 9° i 1 9° , 93 --- O, l 6
2 0 ,5 7 40 92 9r >87 o , 13
1 7 ,9 4 35 r - i f : 9 2 ,8 l — 0 ,0 4
■ 5,3 8 , 30 93 i 95, 7,5 -4- 0 ,0 2
1 2 ,8 2 I - j g j ■ 94 i 9 4 ,6 8 | — 0 , 1 8
1 0 ,2 5 20 95 ■ 9 5 ,6 2 -4— 0 , 1 5
7 ,6 9 ■ 5 96 ï : 9 6 ,5 6 - — 0,3^1
E i 10 '97 i 9 7 , 5 ? | 0 ,0 0
La température étant fuppofée la même, frie principe
eft vrai, la force d’adhéfion d’une matière donnée
avec l ’eau., doit non-feulement augmenter.ou
diminuer fuivant l’amplitude de la furface , mais encore
ces différences doivent être comme les différences
des furfaces*