[ SS* ]
S E C T XIDe
Motu Corporum Sph^ericorum viribus centripeta je mutuo petentium.
HaZenus expofui motus corporum attraZorum immobile, quale tarnen vix extat in rerum natura. adA ctternatZruiom- nes enim fieri folent ad corpora ; 8c corporum trahentium 8ctraZorum aZiones femper mutuae funt at8ctertiam
: adeo ut neq; attrahens poilit qui eafecqeruea lnese,q ;p eart trLaZeguemm, ftiu mdu o fint corpora, fed ambo ( per Legum Corollarium quar- ) mune rqevuoalfvi aanttturra:z ione mutua, circum gravitatis centrum com8cattrahantur
vel omnia ffei pmluurtau of ianttt racohrapnotr a (quae vel ab unico ) veri debeant,ut gravitatis centrum commune hvaeelc q iutaie ifncatet rv feel munoi-- ftourmm ietxepr omnoervee actourrp oinr udmir efeZ ummu.t uoQ truaah edneti ucmau,fcao njfaidme rapnedrgoo vmireos- cqeunatmripure,t avs etraiunsq udaicman Atuttrr aImZipounlefuss, .q uaImn vMis afothrteamiièa,t icfiis p henyifmice j alom- vuetirmfaumr ufer,r m&o nper, oqputeor epao fmlìmiiìuiss ad ifLpeuZtaotriiobnuisb uMs aPthheymficaisti,c isfa fmaciilliiaursi intelligi.
Prop. LVII. Theor. XX.
Corpora duo fe invicem trahentia deferikunt, circum commune
centrum gravitatis, circum fe mutuo, porStuionnta elensi mco rdpifoiarnibtuiase, aa ctoqm; amduenoi ignr advaittaa trißsag tciuoernnaetsr ßoam dre icilneipsv.ricoecme p, roFcoemrupnotunre
naduote, min h adea dtaif iraanttiioanee c airdc udmift atnertmiamin otso ftuamos icnotmerm cuonrpi omrao8.c
tu
Étaxn atn ingcullianrait, iponroepmte areda fqe umodu1 tiuno .d 3ireLZinuemae f aemutpeemjt jraecZean:,t;eqsu 2neo fnu nmt uin
dfuaotsa freartuionntuer a, df iginuvriacse mcir, c&um a eeqouladlei mmo tteur máningousla (ri icnir pculamni st eqrumaein ous- nmao cvuemnt uhri s terminis vel quiefcunt vel motu quovis non angulari ) rae quae his ddieftfacnritbiiusn ct irocmumnianZoi sf imdeilfecsr.i b^uPnrtouinr.d eQ i^lmE.i lDes. funtfigu-
Prop. LVIII. Thcor. XXL
circa gravitatis centrum commune: dico quodfeguris, quas
Si corpora duo viribus quibufevis fe mutuo trahunt^ interea revolvuntur
corpora fee mota dtfcribunt circum fee mutuo, pot efe figura femilis
eequaliSj circum corpus alterutrum immotum, viribus iifedem de-
fRecerivboi.lvantur corpora 5, PC, pergendo de circa commune gravitatis centrum S ad T deq; P ad A dato punZo s ipfis ST P, Q aequales Sc parallelae ducantur femper sp, sq\ 8ccurva quam punZump, revolvendo circum punZum immotum j-,depfcqrvr
bit, erit fimilis 8c aequalis curvis quas corpora S', Pcum fe mutuo; proindeq; defcribunt cir- ( per Theor. XX. ) fimilis curvis S t
Sc PQV,tatis cent ruqmua s eadem corpora defcribunt circum commune graviC:
id adeo quia proportiones linearum SC, CP 8c
S P vel sp ad invicem dantur. Cas. j. Commune illud grXav itatis centrum C, per Legum Co- 2 rol