[ <S° ]
tns redum Sc 4 D S. Nam proporti» S P - fPH a d P H tit 2 S P
ad L, in cafu hujus Corollarii, lit D 54- D H ad D H ut 4 D S
ad Ly 8c divifim D S ad D Hut 4 D S — Lad L.
Corol. 2. Unde 11 datur corporis velocitas in vertice principali
D y invenietur Orbita expedite, capiendo fcilicet latus redum
ejus, ad duplam diftantiam D S, in duplicata ratione velocitatis
hujus datae ad velociratem corporis in circulo ad diftantiam D S
gyrantis: ( Per Corol. 3. Theor. VIII. ) dein D H ad D S ut latus
redum ad difterentiam inter latus redum 8c 4 D S.
Corol. 3. Hinc etiam lì corpus moveatur in Sedione quacun-
qj Conica, & ex orbe fuo impulfu quocunq; exturbetur ; cog-
nofci poteft orbis in quo poftea curfum fuum peraget. Nam
componendo proprium corporis motum cum motu ilio quem im-
pulfus folus generaret, habebitur motus quocum corpus de dato
impulfus loco, fecundum redam pofitione datam, exibic
Corol. 4. Et fi corpus ìllud vi aliqua extrinfecus impreifa continuo
perturbetur, innotefcet curfus quam proxime, colligendo
mutationes quàs vis.illa in pundis qjioiiHam mducit, Sc exle-
riei analogia, mutationes continuas in locis intermediis aftiman-
do.
SECT.
m ]
S E C T . IV.
De Inverinone Orbinrn LUipticormii Farabolicomm & Hyperbolicorum
ex umbilico dato.
Lemma W .
Si ab EUipfeasvel Hyperbolae cujufvis umbilici* duobus SiHiOdpunti-
um MSB tertium V infietiantur retix dux S F ,H F , f W W
na HV xqualis fit axi tranfverfo figurx, alteraSV a perpendículo
T R in fe demiffo bifecetur in T ; perpendiculum iUud 1 RJec-
tionem Comcam alicubi tan git’. ©N
contrai fi fungiti erit V H xqualis v
axi figurx.
Secet enim VII fedionem corii-
caminR, Sc jungatur S R. Ob ae-
quales redas TS, TV, aequales e-
runt anguli T R S, T RV. Bifecat
ergo RT'angulum VRSSc propte- S
reafiguram tangit: Sc contra. Q^L. D. ^
Prop. XVIII. Prob. X.
Datis umbilico & axibm tranfverfis defcribereTrajeBorias LUipti-
cos & H yperbolicaSi qux tranfibunt per punti a data, & retios pofitione
datas contingent. ; _ .
Sir S communis umbilicus figuraran^ AC longitudo axis frani-
verfi T raj'do i« cujufvis -, P punduin per quod Tra jedo na debet
tronfi re j Sc TK reda quam debet tangere. Centro P intervallo
A B - SP.fi orbita fit Ellipfis, vel A B 4-S P,fi ea fit Hyperbola,
defcribatur circulus H G. Ad tangentem T R demittatur perpen