TY, TZ; quarum YZ trahendo corpus fecundum fiji Iongitudinem P 7, motum ejus nil mutat, vis autem altera T Yin curva >S7 R <2_direcie accelerai vel dìreéìe retardat m. otuPmro ienjdues creutmar dhaarteio nfiet su itn vOiafc idlleaftciorinbuenmd ad uIaRru,m a (c cmelaejroarriiso nes corporis vel Sctibus proportionalibus deTeribendis, erunt Temper umt inpoarritse sJ ) ipllaare-, Scau tpermop qtuearee ap afarcteies ntto utits pTaermteps eirl lsper olipmourtli odneafctersib afinmtuurl. deCfcorirbpuonrta, fimul defer ibent totas. C7.E.D. Corol. i. Hinc fi corpus 7 filo refiilineo A T a centro Adens, deTcribat arcum circularem penS
T R Q S c Tecundum lineas parallelas deorTum a vi aliqua, quinatee rfieta a du rvgiema tuur- niTormem gravitatis, ut arcus TR ad-ejus finum TNrunt OTcillationum fìngularum tempora. Etenim o : bx qpuaraalilale laes- TZ, AR, fimilia erunt triangula A N 7, 1 YZ,TZ erit ad & propterea AT ut T Ymis exponatur per Iong iatudd TinNem; dhaotca mef t, fi gravitatis fv, is; unifor- Alationes evadent Ifochronae, erit ad vim g Tra, vvitisa tTis Z, qua Ofcil- ATRipfiTT aequalis ad arcus illius finum T T, ut arcus N.
Corol.ad motu m2 .c oIngTiteurrv ainnd Humor oimlo pgrieisfl,à efi vitiare sc uam M vai chgrinaavi tinat iPse ncdomulupmo
npil icpaonfdfion tr,e ucita vnigs utloutma diueobr Taurcmu TTe mper fit ut linea quae oritur apR
Sc radio A R, ad finum T OTcillationes omnes erunt Ifochronae. N,
Prop. LIV. Prob. XXXVI.
Convejps figurar'ttm ■ curvilinearupt quadratiti ijnveniretempera qni-
bm corpora m.qnalibet centripeta in linehquibufeunq', curvh in piano
per centrum v ir inni tranfie unte defiiriptis, deficendent & aficenclent.
DeTcendat enim corpus de loco quovis S per lineam, quamvis
cur.vam . 5Tt R jn piano per viri.um centrum C trahTeunte datani.
Jungatur CSSc dividatwq eadern in partes jippuiheras aequales,
' 'fit-
deTcribantur fitqj d partium illarum aliqua.[■5 9] Centro C, inter va 11 D corpus CSqua Et ex circuii data tum PT,lege vis Lineae centripetae,curvae STtR tum altitudine occurregtes js CD,a Cd in T Sc t. cecidit Prop.; dabitur dt, XXXIX.velocitas Tempus corporis in alia quavis ldtie
jus Ttucdriibnite lCin Teo,lapmer eft ut lineolae hu- autem, quo corpus de- ì natim ìtTCTempo longitudo r)i dhiureicf ìpc, id Tt,r o&po eft vretiloonciatlaiss ut Tecans ( fiint angu-voerrTdei-. , / . .J:\>p
j per punéium applicata P perpendicularis,PN ad rediam CS ob ■ \ P Scdatam d erit re&angulum P T
tempori hoc eft area idem dx
D N,curva nfit proportionale.illa linea quam DNnd, Ergo pun£fie lum . perpetuo pderoTpceonrdtieonndaoli tangit,s dteeTmcrpipofriti erit area SN qlinueoa SmcNo rDpuSs N proindeq;tempus. Q. ex E.inventa I.
illa area dabitu S T r; Prop. LV. Theor. XIX.
Si corpus movetnr in finperficic qnacnnp, curva, cujm axis per centrimi
vir'mm tranfit, \& a corpore in axem demittatur perpendi-
ciilark, eiep, parallela Cd- ¿equalìs ab axis puncio qjiovmducatur:
dico quod parallela illa aream tempori proportionalem deficri-
bSeitt .B S K L Tuperficies curva, 7 corpus in ea revolvens, Trajectoria quam corpus in eadem deTcribit, STt R Sriae, initium Trajecio- O MNK axis Tuperficiei curvse, 7 Nem perpendicularis, reéia a corpore in ax0
Pquod in axe da tur edueia, huic parallela & aequalis a puncio 0 AP veTtigium Trajeéiorix a puncio Fin