temporibus C I 8c velocitates 8cverfis. Qua erant primo i navrecnuise nddefac.ripti in Ofcillationibus uni- quaOlifbcuilsle 8nct uera rjuamm ffeumniipaercnudbuulas adeuquoa cleosr pcoapraia nintu Cr yrceldobide ibus ina- centrilq; GH,gh, G, g 8c intervallis GH , gh defcribantur femicirculi HZ KM, b%, kjn. 1 n eorum diametris HM, hmneola aequales capiantur li-HT, by, 8c erigantur normaliter 2"Z, yfereniiis occurrentes in Z 8c x. circum- %.initio motus verfantur incircum feQreunotniaia gmlo bcio rpora pendula fub QOS,ribus aqualibus urgentur in centrum, incipiuntq; d iraed&eeo qv; ear fvuis
cUerngteraunmtu mr oigvieturir, cfopraptoiar af imul confefta aequalia erunt fub initio. H, b a viribus iildem in H 8c h, .fintq;
HT, by fpatia aqualia jpfomotus initio deforiptä,- 8ccarcus H Z, b%,rati od penriomtaa budnupt laiceaqtuaa l'eiail : teeamdpemor aq. ua Hreo<ruftman,g aurlocruuunmr G n/aif centium id eft, eadem.qua linearuin Y, g by, GH, gb-,midiata ratione femidiametrorum deno taandet oaqq^uäarlciUa st-ecmapptoi rian. Edfit
ergo tempus totum in circulo HKM,ide refpondens, ad tempus totum in ciÖrcfucillola tioni in una Cyclo- h kjnaltera Cycloide refpondens, ut femipeiiferia Öfcillationi in HKMproportionale in ter ha ne fcmiperiferiam 8c femiperife naida mm ceidricuumii aherius hhjn, id eft in dimidiata ratione diametri HM adrrum diame- h m,mae ad per imhoect ruefmt iCn ydeliomididisia, taalt erraituios,n ' ea dpeeorqim; teetmri pCusy iellluodid.iins Cpyri-
. .fi- itótì • :I 1 ' i i É . ÌÉBÌ - • . clocloide
quavìs eft ( per r-ferif ] Corol. 3. Prop. rum rechnguli XLIX.) ut latus quadra- B LCclois deferipta fuit, 8c cdoifntteerncntit iiah bin tfeerm feidtniaìdmiaemtreotrRuomta i,l laqmu a8 cC iyé-- midiametrum globj,r Q.E. I. Eft 8c idem tempus ( Prop. L. per Corol. ) in dimidiàta tatione longitudinis fili A K.Porro fi in globis concentricis deicribantur fimiles QC^y cElo. iId.cs : iqnu oanniaalmog jesa pruermim peetrroimruemtr i lofucnjst fuutn fte umti ddiiaftmanettriia glloocboorruumm a8 c cvoirmes
maduenoi uglto Cboyrculomid cuemnt rpoe, rihmoect rei ft8 cu pte rgilmobeotrrourmum f empairdtiea?m fiemtriil,e sa, taqc;
lqautiaoi niai beurus nfti mteilmibpuosr ad eqfeuriibbuusn. tpuerr, im8ce tprororupmte repaa rOtefsc ilfliamtiiolense sO-ofcmil-
nbeos deartuon fti nIfto cinh rodnima.i dCiautam riagtiitounr eO flcoinllgaittiuodniunmis tempora in GloA
R, atq; adeo C A K ob datami A C )ih dimidiata ratione numeri-——, id eft in ra- A (j
tione integra numeri V—A—K ;f 8c hic numerus VAfRer vur ta1 ratio- ne A. C Aij AR ad AC (u tneat, 8c propterea in f igt lionb iCs ydcilvoeirdfiìbs,u usb fii mGiylicblouisd).eisd efmun fte fmimpielre sm, (ai-r quut otvemis pgulos b: om daantoif,e ftautmq; eafdte oq iiino dg lOobfcisi lloamtinoinbuums c otenmcepnotrriac iisn . faulniot -utito nneu lmonegruitsu dVi-nA—i s_f Lf,i li id eft, in ratione .compofita éx dimidiata ra- A R dire&e Se tri globi dimidiata ratione lemidiame- "A CDeniq; fi vinirveesr afeb. foluQta Ed. iIv.erforutn globorum. ponantur ina- qliunadlees ,f;i atcecmelperoartaio nceasp.tiaenmtupro riinb udsiJmseidqiuaatali bruastfiao&nea , vierriuumnt uintvvierref«e,. -fvfpealoticai teartuesn te rauqnuta liina eqaudéam h ids imtemidipaotari brautsi odneefe driibruentetu, r8. c pErrogpot eOrefa- -; vciilrliabtuiòsn easb ioinlù tgislo :b fias& .aSèe, :C4yucnlot iidni bruast iocmnénqibùuas- ,c:■ oqmuipbounfeitutninqe; xc udnia- W 2 mi