C 4 ° I
Corol. i . Hinc fi corpus unum radio ad alterum du&o defcribit
areas temporibus proportionales, atq; de vi tota ( five Amplici,
five ex viribus pluribus,juxta Legum Corollarium fecundum,com-
pofita, ) qua corpus prius urgetur, fubducatur ( per idem Legum
Corollarium ) vis tota acceleratrix qua corpus alterum urge- '
tur 5 vis omnis reliqua qua corpus prfus urgetur tendet ad corpus
alterum ut centrum.
Corol. 2. Et fi are* ili* funt temporibus quamproxime proportionales,
vis reliqua tendet ad corpus alterum quamproxime.
Corol. 3. Et vice verfa, fi vis reliqua tendit quamproximead
corpus alterum, erunt are* ili* temporibus quamproxime proportionales.
Corol. 4. Si corpus radio ad alterum corpus du&o defcribit
areas qu*, cum temporibus collat*, funt valde in*quales, & corpus
illud alterum vel quiefcit vel movetur uniformiter in direnimi;
aftio vis centripet* ad corpus illud alterum tendentis, vel
nulla eft, vel mifcetur Se componitur cum adionibus admodum
potentibus aliarum virium: Vifq; tota ex omnibus, fi plures funt
vires, compofita, ad aliud ( five immobile five mobile ) centrum
dirigitur, circuiti quod *quabilis eft arearum defcriptio. Idem ob-
tinet ubi corpus alterum motu quocunq; movetur, fi modo vis
centripeta fumatur, qu* reftatpoft fubdudionem vis totius agen-
tis in corpus illud alterimi.
Scholium
Quoniam *quabilis arearum defcriptio Index eft centri quoi
vis illa refpicit qua corpus maxime afficìtur, corpus autem vi ad
hoc centrum tendente retinetur in orbita fua, & motus omnis
(ircularis rede dicitur circa centrum illud fieri, cujus vi corpus re-
trahitur de motu redilineo Se retinetur in Orbita: quidni ufur*
p?mus in fequentibus aquabilem arearum defcriptionem ut Indi-
cem centri circum quod motus omnis circularis in fpatiis hberis
peragitur ?
Prop.
E 4 1 ]
Prop. IV. Theor. IV.
Corporum qu£ dìverfos circulos ¿equabili motu defcribunt, vires centripeta.
r ad centra eorundem circulorum tendere, & efje inter fe
ut arcunm fimul defcriptorum quadrata applicata ad circulorum ra-
dios.
Corpora 15, b in circumferentiis circulorum B D , bd gyran-
tia, fimul defcribant arcus B D , bd. Quoniam fola vi infitade-
fcriberent tangentes 15 C, bc his arcubus *quales, manifeftum
eft quod vires centripet* funt qu*
perpetuo retrahunt corpora de
tangentibus ad circumferentias
circulorum, atq; adeo h* funt
ad invicem in ratione prima fpa-
tiorum nafcentiumC L>, cd : ten-
dunt vero ad centra circulo-
rüm per Theor. II, propterea
quod are* radiis defcript* po-
nuntur temporibus proportionales.
Fiat figura thj? figur* D
C B fimilis, Se per Lemma V ,
lineola C D erit ad lineolam k j ut
arcus B D ad arcumb t : nec non, per Lemma x i , lineolanafcens
t ad lineolam nafcentem de ut bt quad. ad bd quad. Se ex *-
quo lineola nafcens D C ad lineolam nafcentem de ut B D x b t
ad bd quad. feu quod perinde eft, ut ad ^ a"
deoq; I ob «mal» ra tio n e sÌ ■ Sb l&SlB? ) H 4SSB W ad i Sl i
V Q^E.D.
Corol. 1. Hinc vires centripet* funt ut velocitatum quadrata
applicata ad radios circulorum.
Corol. 2. Etreciproce ut quadrata tèmporum periodicorumap-
G pii-.